Skip to article frontmatterSkip to article content
IRSA Tutorials

Searching for AllWISE Atlas Images

This notebook tutorial demonstrates the process of querying IRSA’s Simple Image Access (SIA) service for AllWISE Atlas images, making a cutout image (thumbnail), and displaying the cutout.

Learning Goals

By the end of this tutorial, you will:

Introduction

The AllWISE program builds upon the work of the successful Wide-field Infrared Survey Explorer mission (WISE; Wright et al. 2010) by combining data from the WISE cryogenic and NEOWISE (Mainzer et al. 2011 ApJ, 731, 53) post-cryogenic survey phases to form the a comprehensive view of the full mid-infrared sky. The AllWISE Images Atlas is comprised of 18,240 4-band calibrated 1.56°x1.56° FITS images, depth-of-coverage and noise maps, and image metadata produced by coadding nearly 7.9 million Single-exposure images from all survey phases. For more information about the WISE mission, see:

https://irsa.ipac.caltech.edu/Missions/wise.html

The NASA/IPAC Infrared Science Archive (IRSA) at Caltech is the archive for AllWISE images and catalogs. The AllWISE Atlas images that are the subject of this tutorial are made accessible via the International Virtual Observatory Alliance (IVOA) Simple Image Access (SIA) protocol. IRSA’s AllWISE SIA service is registered in the NASA Astronomical Virtual Observatory (NAVO) Directory. Based on the registered information, the Python package pyvo can be used to query the SEIP SIA service for a list of images that meet specified criteria, and standard Python libraries can be used to download and manipulate the images. Other datasets at IRSA are available through other SIA services:

https://irsa.ipac.caltech.edu/docs/program_interface/api_images.html

Imports

# Uncomment the next line to install dependencies if needed.
# !pip install matplotlib astropy pyvo
import pyvo as vo
from astropy.coordinates import SkyCoord
from astropy.nddata import Cutout2D
from astropy.wcs import WCS
import astropy.units as u
import matplotlib.pyplot as plt
from astropy.utils.data import download_file
from astropy.io import fits

Section 1 - Setup

Set images to display in the notebook

%matplotlib inline

Define coordinates of a bright star

ra = 314.30417
dec = 77.595559
pos = SkyCoord(ra=ra, dec=dec, unit='deg')

Section 2 - Lookup and define a service for AllWISE Atlas images

Start at STScI VAO Registry at https://vao.stsci.edu/keyword-search/

Limit by Publisher “NASA/IPAC Infrared Science Archive” and Capability Type “Simple Image Access Protocol” then search on “AllWISE Atlas”

Locate the SIA2 URL https://irsa.ipac.caltech.edu/ibe/sia/wise/allwise/p3am_cdd?

allwise_service = vo.dal.SIAService("https://irsa.ipac.caltech.edu/ibe/sia/wise/allwise/p3am_cdd?")

Section 3 - Search the service

Search for images covering within 1 arcsecond of the star

im_table = allwise_service.search(pos=pos, size=1.0*u.arcsec)

Inspect the table that is returned

im_table
<DALResultsTable length=4> sia_title ... coadd_id ... object ... object ---------------------- ... ------------- W4 Coadd 3150p772_ac51 ... 3150p772_ac51 W2 Coadd 3150p772_ac51 ... 3150p772_ac51 W3 Coadd 3150p772_ac51 ... 3150p772_ac51 W1 Coadd 3150p772_ac51 ... 3150p772_ac51
im_table.to_table().colnames
['sia_title', 'sia_url', 'cloud_access', 'sia_naxes', 'sia_fmt', 'sia_ra', 'sia_dec', 'sia_naxis', 'sia_crpix', 'sia_crval', 'sia_proj', 'sia_scale', 'sia_cd', 'sia_bp_id', 'sia_bp_ref', 'sia_bp_hi', 'sia_bp_lo', 'sia_bp_unit', 'magzp', 'magzpunc', 'unc_url', 'cov_url', 'coadd_id']
im_table.to_table()['sia_bp_id']
Loading...

Section 4 - Locate and download an image of interest

Let’s search the image results for the W3 band image.

for i in range(len(im_table)):
    if im_table[i]['sia_bp_id'] == 'W3':
        break
print(im_table[i].getdataurl())
https://irsa.ipac.caltech.edu/ibe/data/wise/allwise/p3am_cdd/31/3150/3150p772_ac51/3150p772_ac51-w3-int-3.fits

Download the image and open it in Astropy

fname = download_file(im_table[i].getdataurl(), cache=True)
image1 = fits.open(fname)

Section 5 - Extract a cutout and plot it

wcs = WCS(image1[0].header)
cutout = Cutout2D(image1[0].data, pos, (60, 60), wcs=wcs)
wcs = cutout.wcs
fig = plt.figure()

ax = fig.add_subplot(1, 1, 1, projection=wcs)
ax.imshow(cutout.data, cmap='gray_r', origin='lower',
          vmax = 1000)
ax.scatter(ra, dec, transform=ax.get_transform('fk5'), s=500, edgecolor='red', facecolor='none')
<Figure size 640x480 with 1 Axes>

About this notebook

Author: David Shupe, IRSA Scientist, and the IRSA Science Team

Updated: 2022-02-14

Contact: the IRSA Helpdesk with questions or reporting problems.

Citations

If you use astropy for published research, please cite the authors. Follow these links for more information about citing astropy:

Please include the following in any published material that makes use of the WISE data products:

“This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration.”

Please also cite the dataset Digital Object Identifier (DOI): WISE team (2020)

References
  1. WISE team. (2020). AllWISE Atlas (L3a) Coadd Images. IPAC. 10.26131/IRSA153