NEOS near the Galactic Center

Calculate the distance NEOs are from the galactic center over one month. Plot the on sky distribution of all NEOs along with the galactic and ecliptic planes.

import kete
import matplotlib.pyplot as plt
import numpy as np

jd_start = kete.Time.from_ymd(2024, 3, 1).jd
jd_end = kete.Time.from_ymd(2024, 4, 1).jd


# Load all orbits from the MPC catalog
all_orbits = kete.mpc.fetch_known_orbit_data()

# Filter to just the neos
neos = all_orbits[kete.population.neo(all_orbits.peri_dist, all_orbits.ecc)]

# convert the catalog to States
states = kete.mpc.table_to_states(neos)

# propagate the states to the start date, this may take several seconds.
# If this is NEOs, there will be several impacts of old small objects which hit
# the Earth over the years.
states = kete.propagate_n_body(states, jd_start)

galactic_center = kete.Vector.from_el_az(
    0, 0, 1, frame=kete.Frames.Galactic
).as_equatorial

dist_to_galactic_center = []
while states[0].jd < jd_end:
    states = kete.propagate_two_body(states, states[0].jd + 1)

    earth = kete.spice.get_state("Earth", states[0].jd)

    earth_to_obj = [(s.pos - earth.pos) for s in states]
    dist_to_galactic_center.append(
        [v.angle_between(galactic_center) for v in earth_to_obj]
    )

min_distance = np.min(dist_to_galactic_center, 0)

print(
    f"About {np.mean(min_distance < 10):0.2%} of NEOs get within 10 degrees of the "
    "Galactic center over 1 month"
)
About 4.88% of NEOs get within 10 degrees of the Galactic center over 1 month

Plot on sky position of all NEOs along with galactic and ecliptic planes

galactic_plane = []
ecliptic_plane = []
for angle in np.arange(181, 361 + 180, 3):
    vec = kete.Vector.from_el_az(0.0, angle, 1, kete.Frames.Galactic).as_equatorial
    galactic_plane.append([(vec.ra + 180) % 360 - 180, vec.dec])

    vec = kete.Vector.from_lat_lon(0, angle).as_equatorial
    ecliptic_plane.append([(vec.ra + 180) % 360 - 180, vec.dec])

ra_decs = [
    [(v.as_equatorial.ra + 180) % 360 - 180, v.as_equatorial.dec] for v in earth_to_obj
]

plt.figure(dpi=200, figsize=(8, 4))
plt.scatter(*np.transpose(ra_decs), s=1, label="NEOS")
plt.scatter(*np.transpose(galactic_plane), s=0.5, c="black")
plt.plot(*np.transpose(ecliptic_plane), c="Grey", label="Ecliptic")
plt.scatter(
    (galactic_center.ra + 180) % 360 - 180,
    galactic_center.dec,
    s=10,
    c="black",
    label="Galactic Center",
)
plt.gca().invert_xaxis()
plt.legend(framealpha=1)
plt.xlabel("RA (Deg)")
plt.ylabel("DEC (Deg)")
plt.title("NEOS On Sky")
plt.show()
NEOS On Sky

Total running time of the script: (0 minutes 11.494 seconds)

Gallery generated by Sphinx-Gallery