Plot On-Sky Uncertainty

This is inspired by the JPL Scout service, running Monte Carlo of the covariance matrix of the orbit fit.

Monte Carlo of 2017 HP3, Apparent V-Mag Uncertainty, On-Sky Position at Lowest Mag 2024-11-18
import matplotlib.pyplot as plt
import numpy as np
import kete

# Inputs:
# -------

obj_name = "2017 HP3"

days_into_future = 90
time_step = 3

n_samples = 1000


# Calculating Samples
# -------------------
obj = kete.HorizonsProperties.fetch(obj_name)
g = obj.g_phase if obj.g_phase else 0.15

# Sample time
cur_jd = kete.Time.now().jd
jd_e = cur_jd + days_into_future
jd_s = obj.epoch - 10
jds = np.arange(jd_s, jd_e, time_step)

# Sample the covariance matrix
states, _ = obj.sample(n_samples)

# Propagate the position of all states to all time steps, recording the V mags
mags = []
for jd in jds:
    states = kete.propagate_n_body(states, jd)
    earth = kete.spice.get_state("earth", jd)
    m = [
        kete.flux.hg_apparent_mag(
            sun2obj=x.pos, sun2obs=earth.pos, h_mag=obj.h_mag, g_param=g
        )
        for x in states
    ]
    mags.append(m)

# Find the step where the median magnitude was the brightest
brightest_idx = np.argmin(np.median(mags, axis=1))
brightest_jd = jds[brightest_idx]

# position at lowest mag
states = kete.propagate_n_body(states, brightest_jd)
earth = kete.spice.get_state("earth", brightest_jd)
vecs = [(s.pos - earth.pos).as_equatorial for s in states]
ras = np.array([v.ra for v in vecs])
decs = np.array([v.dec for v in vecs])


# Plotting Results
# ----------------
plt.figure(figsize=(9, 4))

plt.suptitle(f"Monte Carlo of {obj.desig}")

plt.subplot(1, 2, 1)
plt.title("Apparent V-Mag Uncertainty")

plt.plot(jds - cur_jd, mags, c="C0", alpha=0.05)

plt.ylabel("V Mag")
ymd_today = "-".join(f"{x:0.0f}" for x in kete.Time(cur_jd).ymd)
plt.xlabel(f"Days from Today ({ymd_today})")

plt.axvline(obj.epoch - cur_jd, ls="--", label="Epoch of fit", c="k")
plt.axvline(0, ls="--", label="Today", c="C1")
plt.axvline(brightest_jd - cur_jd, ls="--", label="Lowest Mag", c="C2")

plt.legend()
plt.gca().invert_yaxis()

# Little bit of trickery to make plotting prettier.
#
# This sorts all ra, dec pairs by the dec value, and unwraps
# periodic valus of ra. What this means is that if ra has
# a collection of points split across the 0-360 boundary it will
# plot around either 0 or 360 as a single blob and extend either to
# negative angles or above 360.
idx_sort = np.argsort(ras)
decs = decs[idx_sort]
ras = np.unwrap(ras[idx_sort], period=360)
ymd = "-".join(f"{x:0.0f}" for x in kete.Time(brightest_jd).ymd)

plt.subplot(1, 2, 2)
plt.title(f"On-Sky Position at Lowest Mag\n{ymd}")
plt.scatter(ras, decs, s=0.1, c="C2")

plt.scatter(vecs[0].ra, vecs[0].dec, s=15, c="k")
plt.xlabel("RA")
plt.ylabel("Dec")
plt.gca().invert_xaxis()
plt.tight_layout()
plt.show()

Total running time of the script: (0 minutes 3.921 seconds)

Gallery generated by Sphinx-Gallery